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Abstract

The study was intended to evaluate the range of dynamic responses of structures with uncertain-but-bounded
parameters by using the parameter perturbation method. The uncertain parameters were modeled as an interval vector.
The first-order perturbation quantities of responses of the perturbed system were obtained through the parameter per-
turbation method, and then taking advantage of interval mathematics a new algorithm to estimate the response interval
was presented. Comparisons between the parameter perturbation method and the probabilistic approach from math-
ematical proofs and numerical simulations were performed. The numerical results are in agreement with the mathemat-
ical proofs. The response range given by the parameter perturbation method encloses that obtained by the probabilistic
approach. The results also show good robustness of the proposed method.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic response analysis of structures plays an important role in the design of structural systems.
However, due to manufacturing errors, measurement errors and other factors, the structural geometric
properties and mechanical properties are usually uncertain. As a result, the structural dynamic response
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is also uncertain. Therefore, it is important to estimate the effect of these uncertainties on the structural
dynamic response.

It is customary to assume that the given system has statistics properties in determining the response of a
dynamic system with uncertainty. Astill et al. (1972) modeled the uncertain parameters as random variables
and calculated the response of structures by use of the Monte Carlo method. A great deal of computational
efforts is needed especially for the MDOF system despite it is accurate. A probabilistic approach to evaluate
the effect of uncertainties in geometrical and material properties of structures on the vibration response of
random excitation was presented by Chen et al. (1992). If the statistics properties of uncertain parameters
are known it will be an effective method. Unfortunately, the sufficient prior knowledge about the uncertain
structural parameters is often absent or wrongly assumed; thus, the probabilistic results may be invalid.
In practice, only the bounds on their amplitude are often known. Therefore, in recent years some non-
probabilistic approaches, such as convex models (Ben-Haim and Elishakoff, 1990; Ben-Haim, 1994;
Ben-Haim et al., 1996; Qiu, 2003) and interval analysis methods (Qiu and Elishakoff, 1998; Qiu and Wang,
2003), are developed to deal with the bounded uncertainties.

On the basis of the parameter perturbation method and interval mathematics, a new algorithm to eval-
uate the dynamic response range of structures with uncertainties is presented in this paper. Comparisons
between the presented method and the probabilistic approach from two aspects of mathematics proofs
and numerical simulations are carried out.
2. Problem statement

Consider the equation of motion (Meirovotch, 1980; Weaver and Johnston, 1987) of a general dynamic
system with n degrees of freedom in the following form
M€xðtÞ þ C _xðtÞ þ KxðtÞ ¼ FðtÞ ð1Þ

where M = (mij), C = (cij) and K = (kij) are the mass, damping and stiffness matrices; F(t) = (fi(t)) is the
external load vector. x(t) = (xi(t)), _xðtÞ ¼ ð _xiðtÞÞ and €xðtÞ ¼ ð€xiðtÞÞ are the displacement, velocity, and accel-
eration vectors of the finite element assemblage, respectively. M = (mij) is the positive definite matrix.
C = (cij) and K = (kij) are the positive semi-definite matrices.

By the finite element analysis, we know that the mass matrixM = (mij), the damping matrix C = (cij), the
stiffness matrix K = (kij) and the external load vector F(t) = (fi(t)) often depend on the structural parameter
vector a = (ai), and may be expressed as their functions, i.e.
M ¼ MðaÞ ¼ ðmijðaÞÞ; C ¼ CðaÞ ¼ ðcijðaÞÞ ð2aÞ

K ¼ KðaÞ ¼ ðkijðaÞÞ; FðtÞ ¼ Fða; tÞ ¼ ðfiða; tÞÞ ð2bÞ

in which a = (ai) is an m-dimensional vector. Thus, Eq. (1) can be rewritten as
MðaÞ€xða; tÞ þ CðaÞ _xða; tÞ þ KðaÞxða; tÞ ¼ Fða; tÞ ð3Þ

Consider a realistic situation in which the available information on the structural parameter vector

a = (ai) is not enough to justify an assumption on its probabilistic characteristics, we follow the thought
of interval mathematics or interval analysis (Moore, 1979; Alefeld and Herzberger, 1983) and assume that
the structural parameter vector a = (ai) belongs to a bounded convex set—interval vector
a 2 aI ¼ ½a; �a� ¼ ðaIi Þ; ai 2 aIi ¼ ½ai; �ai�; i ¼ 1; 2; . . . ;m ð4Þ
where �a ¼ ð�aiÞ and a = (ai) are the upper and lower bounds of structural parameters a = (ai), respectively.
From interval mathematics, we know that Eq. (4) describes a ‘‘box’’ with m order of dimension.
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Suppose that the upper bound vector �a ¼ ð�aiÞ and the lower bound vector a = (ai) of the structural
parameter vector a = (ai) are given, the objective is to find all the possible dynamic responses x(t) satisfying
the dynamic equation (3), where a is assumed all possible values inside the interval parameter vector aI. This
infinite number of dynamic responses constitute a bounded response set
C ¼ xða; tÞ : MðaÞ€xða; tÞ þ CðaÞ _xða; tÞ þ KðaÞxða; tÞ ¼ Fða; tÞ; a 2 aI
� �

ð5Þ
In general, the set C has a very complicated region.
In interval mathematics (Moore, 1979; Alefeld and Herzberger, 1983), solving the dynamic response

problem (3) subject to (4) is synonymous to find a multi-dimensional rectangle or interval vector containing
dynamic response set (5) for the interval structural parameter vector. In other words, we seek the upper and
lower bounds (or interval dynamic response vector) on the dynamic response set (5), i.e.
xIða; tÞ ¼ ½xða; tÞ; �xða; tÞ� ¼ ðxIi ða; tÞÞ ð6Þ

where �xða; tÞ ¼ ð�xiða; tÞÞ and x(a, t) = (xi(a, t)), and
�xða; tÞ ¼ max xða; tÞ : xða; tÞ 2 Rn;MðaÞ€xða; tÞ þ CðaÞ _xða; tÞ þ KðaÞxða; tÞ ¼ Fða; tÞ; a 2 aIf g ð7Þ

and
xða; tÞ ¼ min xða; tÞ : xða; tÞ 2 Rn;MðaÞ€xða; tÞ þ CðaÞ _xða; tÞ þ KðaÞxða; tÞ ¼ Fða; tÞ; a 2 aIf g ð8Þ

In the sequel, our aim is to determine the upper and lower bounds of the interval dynamic response.
3. First-order parameter perturbation of the structural dynamic response problem

In structural dynamics, a frequently encountered problem is how to take into account in analysis design
change introduced after the structural dynamics analysis has been completed and the dynamic responses
have been computed. If the new design is drastically different from the old one, then a completely new analy-
sis and computational cycle is very necessary. But if the new design varies only slightly different from the
old one, then the problem is whether the information from the old design can be used to extract information
concerning the new design. In particular, the problem of interest here is whether the dynamic response solu-
tion already available can be used to derive the dynamic response corresponding to the new data, without
extensive additional computations. In order to solve the structural dynamic response problem, in the
sequel, we introduce the matrix perturbation technique.

Let us consider the n-dimensional structural dynamic system M0, C0, K0 and F0(t), and denote its
dynamic responses by €x0ðtÞ, _x0ðtÞ and x0(t), where the dynamic responses satisfy
M0€x0ðtÞ þ C0 _x0ðtÞ þ K0x0ðtÞ ¼ F0ðtÞ ð9Þ

Next consider the structural dynamic response problem associated with the n-dimensional structural

dynamic system
M ¼ M0 þ dM ð10Þ

and
C ¼ C0 þ dC ð11Þ

and
K ¼ K0 þ dK ð12Þ

and
FðtÞ ¼ F0ðtÞ þ dFðtÞ ð13Þ
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where the first terms on the right hand sides of Eqs. (10)–(13) M0, C0, K0 and F0(t) are the original dynamic
system and the second terms dM, dC, dK and dF(t) represent small changes from M0, C0, K0 and F0(t). We
shall refer to M, C, K and F(t) as the perturbed system and to dM, dC, dK and dF(t) as the first-order per-
turbation system. By contrast, M0, C0, K0 and F0(t) represent the unperturbed system. The perturbed struc-
tural dynamic response problem can be written in the form
M€xðtÞ þ C _xðtÞ þ KxðtÞ ¼ FðtÞ ð14Þ

where x(t) = (xi(t)), _xðtÞ ¼ ð _xiðtÞÞ and €xðtÞ ¼ ð€xiðtÞÞ are, respectively, the perturbed dynamic displacement,
velocity and acceleration vectors.

Our interest lies in the first-order perturbation dynamic responses. Because M, C, K and F(t) are
obtained from M0, C0, K0 and F0(t) through small perturbations, it follows that as long as the system is
stable the perturbed dynamic displacement, velocity and acceleration vectors can be written in the form
xðtÞ ¼ x0ðtÞ þ dx; _xðtÞ ¼ _x0ðtÞ þ d _x; €xðtÞ ¼ €x0ðtÞ þ d€x ð15Þ
where dx = (dxi), d _x ¼ ðd _xiÞ and d€x ¼ ðd€xiÞ are the first-order perturbations. Substituting Eqs. (10)–(13),
(15) into Eq. (14), we can obtain
ðM0 þ dMÞð€x0ðtÞ þ d€xÞ þ ðC0 þ dCÞð _x0ðtÞ þ d _xÞ þ ðK0 þ dKÞðx0ðtÞ þ dxÞ ¼ F0ðtÞ þ dFðtÞ ð16Þ

The following problem is the determination of the perturbations dx = (dxi), d _x ¼ ðd _xiÞ and d€x ¼ ðd€xiÞ

based on the assumption that M0, C0, K0, F0(t), dM, dC, dK, dF(t), €x0ðtÞ, _x0ðtÞ and x0(t) are known. Here,
we will concentrate on the determination of dx = (dxi).

We will seek a first-order approximate solution, so that the second-order terms in Eq. (16) will be
ignored. Expanding Eq. (16) and combining Eq. (9) yield
M0€x0ðtÞ þ C0 _x0ðtÞ þ K0x0ðtÞ ¼ F0ðtÞ ð17Þ

M0d€xðtÞ þ C0d _xðtÞ þ K0dxðtÞ ¼ dFðtÞ 
 ðdM€x0ðtÞ þ dC _x0ðtÞ þ dKx0ðtÞÞ ð18Þ

Decomposing the mass matrix M = (mij), the damping matrix C = (cij), the stiffness matrix K = (kij) and

the external load vector F(t) = (fi(t)) with respect to the structural parameter vector a = (aj) 2 Rm can result
in
MðaÞ ¼
Xm
j¼1

ajMj ¼ a1M1 þ a2M2 þ � � � þ amMm ð19Þ
and
CðaÞ ¼
Xm
j¼1

ajCj ¼ a1C1 þ a2C2 þ � � � þ amCm ð20Þ
and
KðaÞ ¼
Xm
j¼1

ajKj ¼ a1K1 þ a2K2 þ � � � þ amKm ð21Þ
and
Fða; tÞ ¼
Xm
j¼1

ajF jðtÞ ¼ a1F 1ðtÞ þ a2F 2ðtÞ þ � � � þ amF mðtÞ ð22Þ
where Mj, Cj, Kj and Fj(t) are, respectively, the mass matrix, the damping matrix, the stiffness matrix and
the external load vector associated with the structural parameter aj. This decomposition is generally called
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the non-negative decomposition of a matrix. Such decompositions arise naturally in a practical engineer-
ing context. For example, in structural finite element analysis, Mi, Ci, and Ki may be taken as the ele-
ment mass and stiffness matrices (or possibly substructure matrices) corresponding to the structural
parameter aj.

Let a0 = (a0j) 2 R
m be the nominal value of the structural parameter vector a = (aj) 2 Rm which might be

visualized as the average value of the structural parameter vector a = (aj) 2 Rm. Then, the structural para-
meter vector slightly different from the nominal values a0 = (a0j) 2 Rm could be denoted by
a ¼ a0 þ d ð23Þ

in which d = (dj) 2 Rm is small quantity. Thus, Eq. (15) can be rewritten as
xðtÞ ¼ xða; tÞ ¼ xða0 þ d; tÞ ¼ xða0; tÞ þ dxða; tÞ ¼ x0ðtÞ þ dxða; tÞ ð24Þ

where
x0ðtÞ ¼ ðx0iðtÞÞ; dxða; tÞ ¼ ðdxiða; tÞÞ ð25Þ

It follows that Eqs. (17) and (18) are also represented as
M0€x0ða; tÞ þ C0 _x0ða; tÞ þ K0x0ða; tÞ ¼ F0ða; tÞ ð26Þ

and
M0d€xða; tÞ þ C0d _xða; tÞ þ K0dxða; tÞ ¼ dFða; tÞ 
 ðdM€x0ðtÞ þ dC _x0ðtÞ þ dKx0ðtÞÞ ð27Þ
Obviously, the structural dynamic responses €x0ðtÞ, _x0ðtÞ and x0(t) of the unperturbed structural dynamic
system can be calculated from Eq. (26) by using the common method, such as Wilson-h. In order to obtain
the first-order perturbations of the perturbed structural dynamic system from Eq. (27), by means of the per-
turbation method, we assume that
dxða; tÞ ¼
Xm
j¼1

djXjðtÞ ¼
Xm
j¼1

Xjdj ð28Þ
where
dxða; tÞ ¼ ðdxiða; tÞÞ; Xj ¼ ðX ijÞ; j ¼ 1; 2; . . . ;m ð29Þ

Taking the first and the second derivatives of Eq. (28) with respect to time t yields
d _xða; tÞ ¼ ðd _xiða; tÞÞ ¼
Xm
j¼1

dj
_XjðtÞ ¼

Xm
j¼1

_Xjdj ¼
Xm
j¼1

_X ijdj

 !
ð30Þ
and
d€xða; tÞ ¼ ðd€xiða; tÞÞ ¼
Xm
j¼1

dj
€XjðtÞ ¼

Xm
j¼1

€Xjdj ¼
Xm
j¼1

€X ijdj

 !
ð31Þ
Substituting Eq. (23) into Eq. (19) yields
MðaÞ ¼ Mða0 þ dÞ ¼
Xm
j¼1

ajMj ¼
Xm
j¼1

ða0j þ djÞMj ¼
Xm
j¼1

ða0jMj þ djMjÞ

¼
Xm
j¼1

a0jMj þ
Xm
j¼1

djMj ¼ M0 þ dM ð32Þ
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where
M0 ¼
Xm
j¼1

a0jMj; dM ¼
Xm
j¼1

djMj ¼
Xm
j¼1

Mjdj ð33Þ
Similarly
CðaÞ ¼ Cða0 þ dÞ ¼ C0 þ dC ð34Þ

where
C0 ¼
Xm
j¼1

a0jCj; dC ¼
Xm
j¼1

djCj ¼
Xm
j¼1

Cjdj ð35Þ
and
KðaÞ ¼ Kða0 þ dÞ ¼ K0 þ dK ð36Þ

where
K0 ¼
Xm
j¼1

a0jKj; dK ¼
Xm
j¼1

djKj ¼
Xm
j¼1

Kjdj ð37Þ
and
Fða; tÞ ¼ Fða0 þ d; tÞ ¼ F0ðtÞ þ dFðtÞ ð38Þ

where
F0ðtÞ ¼
Xm
j¼1

a0jFjðtÞ; dFðtÞ ¼
Xm
j¼1

djFjðtÞ ¼
Xm
j¼1

djFj ¼
Xm
j¼1

Fjdj ð39Þ
Substituting Eqs. (28), (30), (31), (33), (35), (37) and (39) into Eq. (27) yields
Xm
j¼1

ðM0
€Xj þ C0

_Xj þ K0XjÞdj ¼
Xm
j¼1

ðFj 
 ðMj€x0ðtÞ þ Cj _x0ðtÞ þ Kjx0ðtÞÞÞdj ð40Þ
Comparing the coefficients of the perturbation parameter dj, j = 1,2, . . . ,m, we obtain
M0
€Xj þ C0

_Xj þ K0Xj ¼ Fj 
 ðMj€x0ðtÞ þ Cj _x0ðtÞ þ Kjx0ðtÞÞ; j ¼ 1; 2; . . . ;m ð41Þ
Therefore, the solution of Eq. (27) is now transformed into the solution of Eq. (41). Because there is no
uncertain variables in Eq. (41), it is convenient to solve Eq. (41) similar to Eq. (26).
4. Interval analysis method

In this section, we will calculate the interval dynamic response vector of structures with uncertain-
but-bounded parameters by use of interval mathematics.

By means of Eq. (4), we may define the nominal value vector or midpoint vector (Moore, 1979; Alefeld
and Herzberger, 1983) of the interval structural parameter vector as
a0 ¼ ða0iÞ ¼ mðaIÞ ¼ ð�aþ aÞ
2

; a0i ¼ mðaIi Þ ¼
ð�ai þ aiÞ

2
; i ¼ 1; 2; . . . ;m ð42Þ
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and the deviation amplitude vector or the uncertain radius vector of the interval structural parameter vector
as
Da ¼ ðDaiÞ ¼ radða IÞ ¼ ð�a
 aÞ
2

; Dai ¼ radðaIi Þ ¼
ð�ai 
 aiÞ

2
; i ¼ 1; 2; . . . ;m ð43Þ
Thus, based on interval mathematics, the interval structural parameter vector is decomposed into the
sum of the nominal value vector and the deviation vector, i.e.
aI ¼ ½a; �a� ¼ ½a0 
 Da; a0 þ Da� ¼ ½a0; a0� þ ½
Da;Da� ¼ a0 þ DaI ¼ a0 þ Da½
1; 1� ¼ a0 þ DaeD ð44Þ
where �a ¼ a0 þ Da; a ¼ a0 
 Da, DaI = [
Da,Da], eD = [
1,1].
In terms of Eq. (44), the interval structural parameter vector may be written in the following form
a ¼ a0 þ d; jdj 6 Da ð45Þ

Combining Eq. (24) with (28), the dynamic response x(a, t) = (xi(a, t)) can be written as
xða; tÞ ¼ xða0 þ d; tÞ ¼ xða0; tÞ þ dxða; tÞ ¼ x0 þ
Xm
j¼1

Xjdj ð46Þ
where
dj 2 DaIj ¼ ½
Daj;Daj�; j ¼ 1; 2; . . . ;m ð47Þ
By making use of the natural interval extension in interval mathematics, from Eq. (46), we can obtain the
interval vector of the dynamic responses of structures
xIða; tÞ ¼ xða0; tÞ þ
Xm
j¼1

jXjjDaIj ð48Þ
where j Æ j denotes absolute value componentwise.
After the interval operations, from the above equation, we have
�xða; tÞ ¼ xða0; tÞ þ
Xm
j¼1

jXjjDaj ð49aÞ
or component forms
�xiða; tÞ ¼ xiða0; tÞ þ
Xm
j¼1

jX ijjDaj; i ¼ 1; 2; . . . ; n ð49bÞ
and
xða; tÞ ¼ xða0; tÞ 

Xm
j¼1

jXjjDaj ð50aÞ
or component forms
xiða; tÞ ¼ xiða0; tÞ 

Xm
j¼1

jX ijjDaj; i ¼ 1; 2; . . . ; n ð50bÞ
From Eqs. (49) and (50) we can determine the interval regions of the dynamic responses of structures
with uncertain-but-bounded parameters by combining the parameter perturbation method and interval
mathematics.
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5. Probabilistic approach

In this section, we will determine the interval dynamic response of structures with uncertain-
but-bounded parameters by the probabilistic approach.

Assume that the m-dimensional uncertain structural parameter vector a = (ai) is random variable (Eli-
shakoff, 1983). Thus, the dynamic response x(a, t) is also random. If we denote the random structural
parameter vector�s expected value, or the mean value (MV), by
EðaÞ ¼ ðEðaiÞÞ ¼ aE ¼ ðaEi Þ ð51Þ

then Eq. (46) can be interpreted as the first order perturbation of the random dynamic response about the
mean value xi(a

E, t), i = 1,2, . . . ,n of the random structural parameter vector a = (ai).
For the random structural parameter vector a = (ai), the variance is defined by
VarðaÞ ¼ ðVarðaiÞÞ ¼ DðaÞ ¼ ðDðaiÞÞ ð52Þ

Then the standard deviation of the random structural parameter vector a = (ai) is defined as
rðaÞ ¼ ðrðaiÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðaÞ

p
¼

ffiffiffiffiffiffiffiffiffiffi
DðaÞ

p
¼ ðVarðaiÞÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffi
DðaiÞ

p
Þ ð53Þ
In terms of Eq. (51), the mean value or expected value of the dynamic response is obtained by taking the
expected value of both side of Eq. (46). In so doing, it follows that
Efxða; tÞg ¼ EfxðaE; tÞg þ E
Xm
j¼1

Xjdj

 !
¼ xðaE; tÞ þ

Xm
j¼1

XjEðaj 
 aEj Þ ð54Þ
and noting that the term EðdjÞ ¼ Eðaj 
 aEj Þ is zero, we obtain
Efxiða; tÞg ¼ xiðaE; tÞ; i ¼ 1; 2; . . . ; n ð55Þ

For the variance of the dynamic response x(a, t) = (xi(a, t)), in a similar way we can obtain as follows
Varðxða; tÞÞ ¼ Dðxða; tÞÞ ¼
Xm
j¼1

ðX j
0X jÞDðajÞ ¼
Xm
k¼1

Xm
l¼1

ðXk
0XlÞCovðak; alÞ ð56Þ
where *
0 denotes component multiplication and generates a vector; Cov(ak,al) is the covariance of the ran-

dom structural parameter variables and is defined as
Covðak; alÞ ¼ E½ðak 
 E½ak�Þðal 
 E½al�Þ� ð57Þ

When the random structural parameter variables are independent, the variance of the dynamic response

can be reduced as
Varðxiða; tÞÞ ¼ Dðxiða; tÞÞ ¼
Xm
j¼1

ðX ijÞ2DðajÞ ¼
Xm
j¼1

ðX ijrðajÞÞ2 ¼
Xm
j¼1

ðX ijrjÞ2 ð58Þ
Obviously, the standard deviation of the dynamic response x(a, txtcommentat) is
rðxða; tÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðxða; tÞÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

ðXj
0X jÞr2
j

vuut ð59Þ
Thus, let k be a positive integer, the probabilistic region of k times standard deviations of its mean value
of the random dynamic response is
yI ¼ ½yða; tÞ; yða; tÞ� ¼ ½xðaE; tÞ 
 krðxða; tÞÞ; xðaE; tÞ þ krðxða; tÞÞ� ð60aÞ
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or component form
yIi ¼ ½y
i
ða; tÞ; yiða; tÞ� ¼ ½xiðaE; tÞ 
 krðxiða; tÞÞ; xiðaE; tÞ þ krðxiða; tÞÞ� ð60bÞ
where the probabilistic upper bound is
yiða; tÞ ¼ xiðaE; tÞ þ krðxiða; tÞÞ ¼ xiðaE; tÞ þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

ðX ijrjÞ2
vuut ; i ¼ 1; 2; . . . ; n ð61Þ
and the probabilistic lower bound is
y
i
ða; tÞ ¼ xiðaE; tÞ 
 krðxiða; tÞÞ ¼ xiðaE; tÞ 
 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

ðX ijrjÞ2
vuut ; i ¼ 1; 2; . . . ; n ð62Þ
From Eqs. (61) and (62) we can obtain the interval region of the dynamic response of structures with
uncertain-but-bounded parameters by using the probabilistic approach. According to the Tchebycheff�s
inequality, we know that the probability of the random variable with finite variance falling within k stan-
dard deviations of its mean is at least 1 
 1/k2, and the bound is independent of the distribution of the ran-
dom variable, provided that it has a finite variance. For sufficient large k, when using the probabilistic
approach to estimate the upper and lower bound of structural response, the value of k times standard devi-
ations in Eqs. (61) and (62) will result in almost a certain event.
6. Comparison of non-probabilistic interval analysis method and probabilistic approach

For any real m-tuples ai P 0,1,2, . . . ,m, according to Cauchy–Schwarz inequality the following inequa-
lity holds
Xm
i¼1

ai P

ffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

a2i

s
ð63Þ
In the following we will perform a comparison between non-probabilistic interval analysis method and
probabilistic approach based on Eq. (63).

Assume that we obtain the interval regions of the uncertain-but-bounded structural parameters based on
the probabilistic statistical information or stochastic sample test and they can be expressed as the following
interval vector form
aI ¼ ½a; �a� ¼ ðaIi Þ ¼ ½aE 
 kr; aE þ kr� ð64Þ
where �a ¼ ð�aiÞ; �ai ¼ aEi þ kri; i ¼ 1; 2; . . . ;m, and a ¼ ðaiÞ; ai ¼ aEi 
 kri; i ¼ 1; 2; . . . ;m, are respectively
the upper bound vector and the lower bound vector of the interval vector aI ¼ ½a; �a� ¼ ðaIi Þ, the vectors
aE ¼ ðaEi Þ and r = r(a) = (r(ai)) = (ri) are respectively the mean value and the standard deviation of the
uncertain structural parameter vector a = (ai), and k is a positive integer. According to the Tchebycheff�s
inequality in probabilistic theory, we know that the probability of the uncertain structural parameter
a = (ai) with finite variance D = D(a) = (Di) = (D(ai)) falling within k standard deviations
r ¼

ffiffiffiffi
D

p
¼ ðriÞ ¼ ð

ffiffiffiffiffi
Di

p
Þ of its mathematical expectation is at least 1 
 1/k2, and the bound is independent

of the distribution of the uncertain structural parameter, provided it has a finite variance. Obviously, from
Eq. (64), the nominal value vector or midpoint vector of the uncertain structural parameter vector a = (ai)
can be calculated as follows
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a0 ¼ ða0iÞ ¼ mðaIÞ ¼ aE; a0i ¼ mðaIi Þ ¼ aEi ; i ¼ 1; 2; . . . ;m ð65Þ

and the deviation amplitude vector or the uncertain radius vector of the uncertain structural parameter vec-
tor a = (ai) can be determined
Da ¼ ðDaiÞ ¼ radðaIÞ ¼ kr; Dai ¼ radðaIi Þ ¼ kri; i ¼ 1; 2; . . . ;m ð66Þ

Thus, in terms of the expressions (65) and (66), the interval regions (49) and (50) of the structural

dynamic response can be rewritten as
�xiða; tÞ ¼ xiða0; tÞ þ
Xm
j¼1

jX ijjDaj ¼ xiðaE ; tÞ þ
Xm
j¼1

jX ijjkrj; i ¼ 1; 2; . . . ; n ð67Þ
and
xiða; tÞ ¼ xiða0; tÞ 

Xm
j¼1

jX ijjDaj ¼ xiðaE; tÞ 

Xm
j¼1

jX ijjkrj; i ¼ 1; 2; . . . ; n ð68Þ
For the sum expression
Pm

j¼1jX ijjkrj, by means of the inequality (63), we have that
Xm
j¼1

jX ijkrjj P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

jðX ijkrjÞ2j

vuut ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

ðX ijrjÞ2
vuut ð69Þ
Since the inequality (69), from Eqs. (61), (62), (67) and (68), we can deduce
xiða; tÞ 6 y
i
ða; tÞ 6 yiða; tÞ 6 xiða; tÞ; i ¼ 1; 2; . . . ; n ð70aÞ
and the vector form
xða; tÞ 6 yða; tÞ 6 yða; tÞ 6 xða; tÞ ð70bÞ
The expressions (70) indicates that under the condition of the interval vector of the uncertain parameters
determined from the probabilistic information, the width of the dynamic response obtained by the interval
analysis method is larger than that by the probabilistic approach for structures with uncertain-but-bounded
structural parameters. Namely the lower bounds within interval analysis method are smaller than those pre-
dicted by the probabilistic approach, and the upper bounds furnished by the interval analysis method are
larger than those yielded by the probabilistic approach. This is just the results which we hope, since accord-
ing to the definition of probabilistic theory and interval mathematics, the region determined by the interval
analysis method should contain that predicted by the probabilistic approach.
7. Numerical example

In order to illustrate the effectiveness of the presented parameter perturbation method for the dynamic
responses of the structures with uncertainty, we apply it to a two-dimensional truss with 6 nodes and 10 ele-
ments as shown in Fig. 1. Young�s modulus of the element material is E = 2.0 · 1011 N/m2 and the element
mass density is q = 7800.0 kg/m3. The dimension and boundary conditions of the truss are indicated in Fig. 1.
Now it is assumed that there are two harmonic sinusoidal excitations P1 = 
100Sin (100pt)N and P2 =
200Sin (100pt)N acting on the node 5 in the vertical direction and the node 6 in the horizontal direction
respectively, with the initial conditions x(t) = 0 and _xðtÞ ¼ 0. Due to the manufacture errors or measurement
errors, the cross-sectional areas of elements exhibit some uncertainties, and are considered to be uncertain-
but-bounded parameters. Their intervals are taken as AI

i ¼ ½Ac
i 
 kbAc

i ;A
c
iþ kbAc

i �; i ¼ 1; 2; . . . ; 10, where
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Fig. 1. A 10-bar two-dimensional truss.
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Fig. 2. Response region yielded by the parameter perturbation method.
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Fig. 3. Response region yielded by the probabilistic approach.
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Ac
i ¼ 1:0� 10
4 m2, b is a variable coefficient and k is a positive integer. Here b is taken as 0.005, and k is taken

as 10. In order to compare with probabilistic approach, these uncertain parameters also are assumed to be
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random variables with mean value lAi
¼ Ac

i and standard variance rAi ¼ bAc
i . In the following, the displace-

ment responses of the node 5 in the vertical direction are calculated using the presented parameter perturba-
tion method in comparison with the probabilistic approach.

Figs. 2 and 3 describe the response ranges of Node 5 in the vertical direction obtained by the parameter
perturbation method and the probabilistic approach, respectively. Comparison between them is plotted in
Fig. 4. It can be seen from Figs. 2–4 that the response range by the presented method enclose that by the
probabilisitc approach. The numerical results are in agreement with the mathematical proof given in Sec-
tion 6. Fig. 5 represents the variations of upper and lower bounds of the structural displacement of Node 5
in the vertical direction with uncertain parameter. We can see that when the uncertain parameters are given
small change, the variations of the upper and lower bounds of the dynamic response are also small, that is
to say, the presented method has a good robustness with respect to uncertainty.
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Fig. 4. Comparison of the response region by two methods.
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Fig. 5. Variations of upper and lower bounds of the structural response with uncertain parameter by the proposed method
(t = 0.012 s).
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8. Conclusions

In this study, based on the parameter perturbation method and interval mathematics, a new algorithm
was presented for determining the range on the dynamic response of structures with uncertain-but-bounded
parameters. It need less prior knowledge on uncertain parameters than the probabilistic approach. Com-
parison between the presented algorithm and the probabilistic approach was performed from two aspects
of the mathematical proofs and the numerical simulations. The numerical results are in agreement with the
theory proofs, which show that the interval dynamic response obtained by the parameter perturbation
method enclose those by the probabilistic approach. Namely the lower bounds within the parameter per-
turbation method are smaller than those predicted by the probabilistic approach, and the upper bounds
furnished by the parameter perturbation method are larger than those yielded by the probabilistic
approach. The results also shows that the proposed method has a good robustness with respect to
uncertainty.
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