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Abstract

The study was intended to evaluate the range of dynamic responses of structures with uncertain-but-bounded
parameters by using the parameter perturbation method. The uncertain parameters were modeled as an interval vector.
The first-order perturbation quantities of responses of the perturbed system were obtained through the parameter per-
turbation method, and then taking advantage of interval mathematics a new algorithm to estimate the response interval
was presented. Comparisons between the parameter perturbation method and the probabilistic approach from math-
ematical proofs and numerical simulations were performed. The numerical results are in agreement with the mathemat-
ical proofs. The response range given by the parameter perturbation method encloses that obtained by the probabilistic
approach. The results also show good robustness of the proposed method.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic response analysis of structures plays an important role in the design of structural systems.
However, due to manufacturing errors, measurement errors and other factors, the structural geometric
properties and mechanical properties are usually uncertain. As a result, the structural dynamic response
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is also uncertain. Therefore, it is important to estimate the effect of these uncertainties on the structural
dynamic response.

It is customary to assume that the given system has statistics properties in determining the response of a
dynamic system with uncertainty. Astill et al. (1972) modeled the uncertain parameters as random variables
and calculated the response of structures by use of the Monte Carlo method. A great deal of computational
efforts is needed especially for the MDOF system despite it is accurate. A probabilistic approach to evaluate
the effect of uncertainties in geometrical and material properties of structures on the vibration response of
random excitation was presented by Chen et al. (1992). If the statistics properties of uncertain parameters
are known it will be an effective method. Unfortunately, the sufficient prior knowledge about the uncertain
structural parameters is often absent or wrongly assumed; thus, the probabilistic results may be invalid.
In practice, only the bounds on their amplitude are often known. Therefore, in recent years some non-
probabilistic approaches, such as convex models (Ben-Haim and Elishakoff, 1990; Ben-Haim, 1994;
Ben-Haim et al., 1996; Qiu, 2003) and interval analysis methods (Qiu and Elishakoff, 1998; Qiu and Wang,
2003), are developed to deal with the bounded uncertainties.

On the basis of the parameter perturbation method and interval mathematics, a new algorithm to eval-
uate the dynamic response range of structures with uncertainties is presented in this paper. Comparisons
between the presented method and the probabilistic approach from two aspects of mathematics proofs
and numerical simulations are carried out.

2. Problem statement

Consider the equation of motion (Meirovotch, 1980; Weaver and Johnston, 1987) of a general dynamic
system with n degrees of freedom in the following form

Mi(t) + Cx(t) + Kx(¢) = F(t) (1)

where M = (m;;), C=(c;) and K = (k;) are the mass, damping and stiffness matrices; F(¢) = (f{1)) is the
external load vector. x(¢) = (x[1)), x(¢t) = (x:(¢)) and ¥(¢) = (%;(¢)) are the displacement, velocity, and accel-
eration vectors of the finite element assemblage, respectively. M = (m;;) is the positive definite matrix.
C=(c;) and K = (k;) are the positive semi-definite matrices.

By the finite element analysis, we know that the mass matrix M = (m;;), the damping matrix C = (c;), the
stiffness matrix K = (k;;) and the external load vector F(¢) = (f(¢)) often depend on the structural parameter
vector a = (¢;), and may be expressed as their functions, i.e.

M = M(a) = (my(a), C = Cla) = (cy(a)) (2)
K = K(a) = (k;(a)), F(1)=F(a1)=(fi(a,1)) (2b)
in which @ = (¢;) is an m-dimensional vector. Thus, Eq. (1) can be rewritten as
M(a)¥(a,t) + C(a)x(a,t) + K(a)x(a,t) = F(a,t) (3)

Consider a realistic situation in which the available information on the structural parameter vector
a = (a,) is not enough to justify an assumption on its probabilistic characteristics, we follow the thought
of interval mathematics or interval analysis (Moore, 1979; Alefeld and Herzberger, 1983) and assume that
the structural parameter vector a = (¢;) belongs to a bounded convex set—interval vector

acd =laa=(d), ae€d=Ia,al, i=12...,m (4)

where @ = (a;) and a = (g;) are the upper and lower bounds of structural parameters a = (a;), respectively.
From interval mathematics, we know that Eq. (4) describes a ““box’ with m order of dimension.
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Suppose that the upper bound vector @ = (a;) and the lower bound vector a = (a;) of the structural
parameter vector a = («;) are given, the objective is to find all the possible dynamic responses x(¢) satisfying
the dynamic equation (3), where a is assumed all possible values inside the interval parameter vector a’. This
infinite number of dynamic responses constitute a bounded response set

I ={x(a,1) : M(a)i(a,?) + C(a)x(a,t) + K(a)x(a,t) = F(a,t),a c d'} (5)

In general, the set I' has a very complicated region.

In interval mathematics (Moore, 1979; Alefeld and Herzberger, 1983), solving the dynamic response
problem (3) subject to (4) is synonymous to find a multi-dimensional rectangle or interval vector containing
dynamic response set (5) for the interval structural parameter vector. In other words, we seek the upper and
lower bounds (or interval dynamic response vector) on the dynamic response set (5), i.e.

x'(a,1) = [x(a,1),%(a,1)] = (xi(a,1)) (6)
where x(a,t) = (x;(a,t)) and x(a,t) = (x(a,?)), and

X(a,t) = max{x(a,?): x(a,t) € R",M(a)x(a,t) + C(a)x(a,t) + K(a)x(a,t) = F(a,t),a € a' } (7)
and

x(a,t) =min{ x(a,?) : x(a,t) € R",M(a)¥(a,t) + C(a)x(a,t) + K(a)x(a,t) = F(a,t),a € a'} (8)

In the sequel, our aim is to determine the upper and lower bounds of the interval dynamic response.

3. First-order parameter perturbation of the structural dynamic response problem

In structural dynamics, a frequently encountered problem is how to take into account in analysis design
change introduced after the structural dynamics analysis has been completed and the dynamic responses
have been computed. If the new design is drastically different from the old one, then a completely new analy-
sis and computational cycle is very necessary. But if the new design varies only slightly different from the
old one, then the problem is whether the information from the old design can be used to extract information
concerning the new design. In particular, the problem of interest here is whether the dynamic response solu-
tion already available can be used to derive the dynamic response corresponding to the new data, without
extensive additional computations. In order to solve the structural dynamic response problem, in the
sequel, we introduce the matrix perturbation technique.

Let us consider the n-dimensional structural dynamic system M,, C,, K, and Fy(¢), and denote its
dynamic responses by ¥y(¢), Xo(¢) and xo(¢), where the dynamic responses satisfy

Moio(l‘) + C()X()(t) + KoXo(t) = Fo(t) (9)

Next consider the structural dynamic response problem associated with the n-dimensional structural
dynamic system

M = M, + M (10)
and

C=Cy+8C (11)
and

K =K, + 8K (12)
and

F(1) = Fo(t) + 8F(t) (13)
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where the first terms on the right hand sides of Egs. (10)—(13) M,, C,, K, and Fy(¢) are the original dynamic
system and the second terms M, 6C, 8K and 8F(¢) represent small changes from My, Cy, K, and Fy(¢). We
shall refer to M, C, K and F(¢) as the perturbed system and to M, 8C, 86K and 8F(¢) as the first-order per-
turbation system. By contrast, M, Cy, K, and F(¢) represent the unperturbed system. The perturbed struc-
tural dynamic response problem can be written in the form

Mi(t) + Cx(t) + Kx(t) = F(¢) (14)
where x(7) = (x[1)), x(¢) = (x;(¢)) and *(¢) = (%,(¢)) are, respectively, the perturbed dynamic displacement,
velocity and acceleration vectors.

Our interest lies in the first-order perturbation dynamic responses. Because M, C, K and F(t) are

obtained from M,, C,, K, and Fy(t) through small perturbations, it follows that as long as the system is
stable the perturbed dynamic displacement, velocity and acceleration vectors can be written in the form

x(t) = xo(t) + 0x, x(¢) = x0(2) + 8%, X(¢) = ¥o(¢) + 6% (15)

where dx = (dx;), x = (0x;) and 8% = (d%;) are the first-order perturbations. Substituting Egs. (10)—(13),
(15) into Eq. (14), we can obtain

(M + 8M) (i (1) + 8%) + (Cy + 8C) (io(1) + 8%) + (Ko + 8K) (xo(1) + 8x) = Fo(t) + 8F (1) (16)

The following problem is the determination of the perturbations éx = (dx;), 8x = (dx;) and X = (o%;)
based on the assumption that My, Cy, Ky, Fo(t), 8M, 8C, 8K, dF(1), X(t), xo(¢) and xo(?) are known. Here,
we will concentrate on the determination of éx = (dx;).

We will seek a first-order approximate solution, so that the second-order terms in Eq. (16) will be
ignored. Expanding Eq. (16) and combining Eq. (9) yield

Mo.i'o(l‘) + C()).Co(l‘) + Koxo(t) = Fo(f) (17)

Mo5(t) + Codic(t) + Kodx(t) = 8F () — (8Mio(t) + 8Cio(t) + 8Kxo(t)) (18)

Decomposing the mass matrix M = (m;;), the damping matrix C = (¢;), the stiffness matrix K = (k;;) and
the external load vector F(¢) = (f{t)) with respect to the structural parameter vector a = (a;) € R" can result
in

m

M(a) = aM; = aiM\ + &M + - + a,M, (19)
=
and
C(a)ziajcj:alcl+a2C2+-~-+amCm (20)
J=1
and
K(a):zm:ajKj:alKl+a2K2+-~-+ame (21)
=
and
F(a,t) = Zm:aij(t) =a1F\(t) + aF2(t) + - + a,F (1) (22)
=

where M;, C;, K; and F(f) are, respectively, the mass matrix, the damping matrix, the stiffness matrix and
the external load vector associated with the structural parameter a;. This decomposition is generally called
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the non-negative decomposition of a matrix. Such decompositions arise naturally in a practical engineer-
ing context. For example, in structural finite element analysis, M,, C;, and K; may be taken as the ele-
ment mass and stiffness matrices (or possibly substructure matrices) corresponding to the structural
parameter a;.

Let ag = (ap) € R be the nominal value of the structural parameter vector a = (a;) € R™ which might be
visualized as the average value of the structural parameter vector @ = (a;) € R”. Then, the structural para-
meter vector slightly different from the nominal values ay = (ao;) € R™ could be denoted by

a=ay+9 (23)
in which é = (9;) € R is small quantity. Thus, Eq. (15) can be rewritten as

x(t) = x(a,t) = x(ap + 6,t) = x(ap,t) + dx(a,t) = xo(t) + dx(a,t) (24)
where

xo(t) = (x0:(2)), Ox(a,t) = (oxi(a,t)) (25)

It follows that Egs. (17) and (18) are also represented as

Moxo(a,t) + Coxo(a,t) + Koxo(a,t) = Fo(a,t) (26)
and

Mydx(a,t) + Codx(a,t) + Kodx(a,t) = 8F (a,t) — (dMXo(t) + 8Cx(t) + 8Kx(¢)) (27)

Obviously, the structural dynamic responses Xo(¢), Xo(¢) and xo(¢) of the unperturbed structural dynamic
system can be calculated from Eq. (26) by using the common method, such as Wilson-6. In order to obtain
the first-order perturbations of the perturbed structural dynamic system from Eq. (27), by means of the per-
turbation method, we assume that

Z 3, X;( Z X;0; (28)
where
ox(a,t) = (dx;(a, 1)), Xj=X;), j=12,....m (29)
Taking the first and the second derivatives of Eq. (28) with respect to time ¢ yields

di(a,t) = (3k,(a,t)) Zax Zxa = (i)’gﬁ,) (30)

and

632((1,[) 5x, a t zm: ixjéj = <iXij5j> (31)

Substituting Eq. (23) into Eq. (19) yields

M(a) = M(ay+ ) = Z a;M; = Z(aw‘ +0;)M; = Z(GOJ‘M;' + 0;M;)
j=1 j=1 j=1
Z M;+Y " 0M; = My + 8M (32)

J=1
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where
My =Y ayM;, SM =Y 6;M;=> M;s (33)
j=1 j=1 j=1
Similarly
C(a) = C(ag+ 6) = C, 4+ 8C (34)
where
Co=) ayG8C =3 6,C;=) Cpj, (35)
=1 =1 =1
and
K(a) = K(ay+ ) = Ky + 8K (36)
where
Ko=) ayK;, 8K=> 0,K;=> K;s (37)
j=1 Jj=1 j=1
and
F(a,t) = F(ay+ 8,t) = Fy(t) + 8F(¢) (38)
where
Fo(t) = ayFi(t), 8F(t)=> 6,F(t)=> 6;F; =) F;j; (39)
J=1 J=1 J=1 j=1
Substituting Egs. (28), (30), (31), (33), (35), (37) and (39) into Eq. (27) yields
D (MoX; + CoX; + KoX;)0; = > (Fj — (Mo (1) + Ciio(t) + Ko (1)))5 (40)
=1 =1
Comparing the coefficients of the perturbation parameter d;, j=1,2,...,m, we obtain
MoX; + CoX; + KoX; = Fj — (Mjio(t) + Cixo(t) + Kjxo(1)), j=1,2,....m (41)

Therefore, the solution of Eq. (27) is now transformed into the solution of Eq. (41). Because there is no
uncertain variables in Eq. (41), it is convenient to solve Eq. (41) similar to Eq. (26).

4. Interval analysis method

In this section, we will calculate the interval dynamic response vector of structures with uncertain-
but-bounded parameters by use of interval mathematics.
By means of Eq. (4), we may define the nominal value vector or midpoint vector (Moore, 1979; Alefeld
and Herzberger, 1983) of the interval structural parameter vector as
(@a+a

ay = (ap;) = m(a') = 0 i = m(a)) =

(@ +a)

s i=12.m (42)
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and the deviation amplitude vector or the uncertain radius vector of the interval structural parameter vector
as

Aa = (Ag) = rad(a’) = 2= Aa,-:rad(af):(a%g"), i=1,2,....m (43)

Thus, based on interval mathematics, the interval structural parameter vector is decomposed into the
sum of the nominal value vector and the deviation vector, i.e.

ad = [a,a) = [ay — Aa,ay + Ad] = [ay, @] + [—Aa,Ad] = ay + Ad' = ay + Aa[—1,1] = ay + Aaey  (44)

where @ = ay + Aa, a = ay — Aa, Aa’ = [—Aa,Ad], e =[—1,1].
In terms of Eq. (44), the interval structural parameter vector may be written in the following form
a=ay+38, [8<Aa (45)

Combining Eq. (24) with (28), the dynamic response x(a,t) = (x{a,t)) can be written as

x(a,t) = x(ap + 8,1) = x(ay,t) + dx(a, 1) = xo + X;9; (46)
=1
where
5,6Aa§:[—Aa‘/,AaJ], Jj=12,....m (47)

By making use of the natural interval extension in interval mathematics, from Eq. (46), we can obtain the
interval vector of the dynamic responses of structures

m

' (a,1) = x(ao, 1) + Y _ |X;|Ad] (48)

J=1

where | - | denotes absolute value componentwise.
After the interval operations, from the above equation, we have

x(a,t) = x(ao,t) + Z’”: |X;|Aa; (49a)

=1

or component forms

m

%@ t) = w(a, ) + Y 1XlAa, i=1,2, (49b)
J=1
and
5(“? 1) = x(ao, ) — Z |Xj|Aaj (503)
=1

or component forms
x(a,0) = xi(ay,0) = > [Xy|Aq;, i=1,2,....n (50b)
j=1

From Egs. (49) and (50) we can determine the interval regions of the dynamic responses of structures
with uncertain-but-bounded parameters by combining the parameter perturbation method and interval
mathematics.
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5. Probabilistic approach

In this section, we will determine the interval dynamic response of structures with uncertain-
but-bounded parameters by the probabilistic approach.

Assume that the m-dimensional uncertain structural parameter vector a = (a;) is random variable (Eli-
shakoff, 1983). Thus, the dynamic response x(a,?) is also random. If we denote the random structural
parameter vector’s expected value, or the mean value (MV), by

E(a) = (E(a;)) = a" = (a7) (51)
then Eq. (46) can be interpreted as the first order perturbation of the random dynamic response about the
mean value x{a”,7), i=1,2,...,n of the random structural parameter vector a = (a;).

For the random structural parameter vector a = («,), the variance is defined by

Var(a) = (Var(a;)) = D(a) = (D(a;)) (52)
Then the standard deviation of the random structural parameter vector a = («;) is defined as

a(a) = (o(a;)) = /Var(a) = \/D(a) = (Var(a,)) = (v/D(a:)) (53)

In terms of Eq. (51), the mean value or expected value of the dynamic response is obtained by taking the
expected value of both side of Eq. (46). In so doing, it follows that

E{x(a,0)} = E{x(a", 1)} + E(Z Xj5j> = x(a",1) + iX.iE(af - a;) (54)

and noting that the term E(J;) = E(a; — a}) is zero, we obtain
E{xi(aat)}:xi(aE7t)a i:1727"'7n (55)

For the variance of the dynamic response x(a,t) = (x{a,)), in a similar way we can obtain as follows

m

Var(x(a, 1)) = D(x(a, 1)) = Y (X' X,)D Z Z (Xix'X;)Cov(ay, ar) (56)

=1

where *' denotes component multiplication and generates a vector; Cov(ay,a;) is the covariance of the ran-
dom structural parameter variables and is defined as

Cov(ar,ar) = E[(ax — Ela])(a; — Ela/])] (57)
When the random structural parameter variables are independent, the variance of the dynamic response

can be reduced as

m m m

Var(x(a, 1)) = Dxi(a, 1)) = Y _(X,;)’'D(a) = Y _(Xy0(a))’ =) (Xy0))’ (58)

j=1 J=1 Jj=1

Obviously, the standard deviation of the dynamic response x(a, txtcommentaz) is

(59)

Thus, let k be a positive integer, the probabilistic region of k times standard deviations of its mean value
of the random dynamic response is

V= v(a,t),y(a,1)] = [x(a®,t) — ka(x(a,t)),x(a”,t) + ko(x(a,t))] (60a)
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or component form
y,[ = [,Xi(‘h t),_v,-(‘h t)] = [xi(aE7 t) - ka(xi(a> t))v xi(aEv t) + ko—(xi(a’ t))] (60b)

where the probabilistic upper bound is
y(a,t) = x,(a"t) + ka(xi(a,t)) = x,(a",t) + k Z(X,-jaj)z, i=1,2,...,n (61)

and the probabilistic lower bound is

m

v(a,t) = xi(a” 1) — ko(x;(a,1)) = x;(a", 1) —k Z(X,,aj)z, i=1,2,....n (62)

J=1

From Egs. (61) and (62) we can obtain the interval region of the dynamic response of structures with
uncertain-but-bounded parameters by using the probabilistic approach. According to the Tchebycheff’s
inequality, we know that the probability of the random variable with finite variance falling within k stan-
dard deviations of its mean is at least 1 — 1/k% and the bound is independent of the distribution of the ran-
dom variable, provided that it has a finite variance. For sufficient large k, when using the probabilistic
approach to estimate the upper and lower bound of structural response, the value of k times standard devi-
ations in Egs. (61) and (62) will result in almost a certain event.

6. Comparison of non-probabilistic interval analysis method and probabilistic approach

For any real m-tuples ¢; > 0,1,2,...,m, according to Cauchy—Schwarz inequality the following inequa-
lity holds

Zai >/ a (63)
i=1 P

In the following we will perform a comparison between non-probabilistic interval analysis method and
probabilistic approach based on Eq. (63).

Assume that we obtain the interval regions of the uncertain-but-bounded structural parameters based on
the probabilistic statistical information or stochastic sample test and they can be expressed as the following
interval vector form

a' = a,a) = (a}) = [a" — ka,d" + ko] (64)

where @ = (a;), a; = aF + ko;, i=1,2,...,m, and a = (q;), a; = a* —ko;, i =1,2,...,m, are respectively
the upper bound vector and the lower bound vector of the interval vector @’ = [a,a] = (a’), the vectors
af = (af) and o = o(a) = (a(a,)) = (0;) are respectively the mean value and the standard deviation of the
uncertain structural parameter vector a = («;), and k is a positive integer. According to the Tchebycheff’s
inequality in probabilistic theory, we know that the probability of the uncertain structural parameter
a=(a;) with finite variance D = D(a)=(D;)=(D(q;)) falling within k standard deviations
6 = /D = (6;) = (\/D;) of its mathematical expectation is at least 1 — 1/k%, and the bound is independent
of the distribution of the uncertain structural parameter, provided it has a finite variance. Obviously, from
Eq. (64), the nominal value vector or midpoint vector of the uncertain structural parameter vector a = (a;)
can be calculated as follows
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ay=(ap) =m(d)=da*, ay=m(d)=d", i=12,....m (65)
and the deviation amplitude vector or the uncertain radius vector of the uncertain structural parameter vec-
tor a = (a;) can be determined

Aa = (Ag;)) =rad(d') = ke, Aa;=rad(d))=ko;, i=1,2,....m (66)

Thus, in terms of the expressions (65) and (66), the interval regions (49) and (50) of the structural
dynamic response can be rewritten as

x(a,t) = x;(ao, t) +Z|X,J|Aaj—xl( +Z|X,,|ko,, i=1,2,. (67)
J=1 Jj=1
and
x,(a,1) = x;(ao, t) Z|X,,|Aa, = x;(d", 1) Z\X,j|koj, i=1,2,. (68)

For the sum expression )" |X;;|ka;, by means of the inequality (63), we have that

m

D Xkl = D (X ikay)? =k, | > (Xy0) (69)
=1 =

j=1
Since the inequality (69), from Egs. (61), (62), (67) and (68), we can deduce
x(a,t) <y(at) <yla,t) <x(at), i=12,....n (70a)
and the vector form
x(a,t) < y(a,t) <y(a,t) < X(a,t) (70b)

The expressions (70) indicates that under the condition of the interval vector of the uncertain parameters
determined from the probabilistic information, the width of the dynamic response obtained by the interval
analysis method is larger than that by the probabilistic approach for structures with uncertain-but-bounded
structural parameters. Namely the lower bounds within interval analysis method are smaller than those pre-
dicted by the probabilistic approach, and the upper bounds furnished by the interval analysis method are
larger than those yielded by the probabilistic approach. This is just the results which we hope, since accord-
ing to the definition of probabilistic theory and interval mathematics, the region determined by the interval
analysis method should contain that predicted by the probabilistic approach.

7. Numerical example

In order to illustrate the effectiveness of the presented parameter perturbation method for the dynamic
responses of the structures with uncertainty, we apply it to a two-dimensional truss with 6 nodes and 10 ele-
ments as shown in Fig. 1. Young’s modulus of the element material is £ = 2.0 x 10"! N/m? and the element
mass density is p = 7800.0 kg/m>. The dimension and boundary conditions of the truss are indicated in Fig. 1.
Now it is assumed that there are two harmonic sinusoidal excitations P; = —100Sin(100%z)N and P, =
200Sin (1007t¢) N acting on the node 5 in the vertical direction and the node 6 in the horizontal direction
respectively, with the initial conditions x(7) = 0 and x(¢#) = 0. Due to the manufacture errors or measurement
errors, the cross-sectional areas of elements exhibit some uncertainties, and are considered to be uncertain-
but-bounded parameters. Their intervals are taken as A! = [ — kBAS, A5+ kPAS], i=1,2,...,10, where
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) @ . @ . 32: 200Sn(100mt)
©,
£
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® ©)
1 @ 3 @ 5
e | Y P, = -100Sin(100mt)
! 100 cm 1 100 cm

Fig. 1. A 10-bar two-dimensional truss.
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Fig. 2. Response region yielded by the parameter perturbation method.
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Fig. 3. Response region yielded by the probabilistic approach.

4; =1.0x 10~* m?, fis a variable coefficient and k is a positive integer. Here f is taken as 0.005, and k is taken
as 10. In order to compare with probabilistic approach, these uncertain parameters also are assumed to be
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random variables with mean value u, = A4; and standard variance o,, = f4;. In the following, the displace-
ment responses of the node 5 in the vertical direction are calculated using the presented parameter perturba-
tion method in comparison with the probabilistic approach.

Figs. 2 and 3 describe the response ranges of Node 5 in the vertical direction obtained by the parameter
perturbation method and the probabilistic approach, respectively. Comparison between them is plotted in
Fig. 4. It can be seen from Figs. 2-4 that the response range by the presented method enclose that by the
probabilisitc approach. The numerical results are in agreement with the mathematical proof given in Sec-
tion 6. Fig. 5 represents the variations of upper and lower bounds of the structural displacement of Node 5
in the vertical direction with uncertain parameter. We can see that when the uncertain parameters are given
small change, the variations of the upper and lower bounds of the dynamic response are also small, that is
to say, the presented method has a good robustness with respect to uncertainty.
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Fig. 4. Comparison of the response region by two methods.
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Fig. 5. Variations of upper and lower bounds of the structural response with uncertain parameter by the proposed method
(t=0.0125).
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8. Conclusions

In this study, based on the parameter perturbation method and interval mathematics, a new algorithm
was presented for determining the range on the dynamic response of structures with uncertain-but-bounded
parameters. It need less prior knowledge on uncertain parameters than the probabilistic approach. Com-
parison between the presented algorithm and the probabilistic approach was performed from two aspects
of the mathematical proofs and the numerical simulations. The numerical results are in agreement with the
theory proofs, which show that the interval dynamic response obtained by the parameter perturbation
method enclose those by the probabilistic approach. Namely the lower bounds within the parameter per-
turbation method are smaller than those predicted by the probabilistic approach, and the upper bounds
furnished by the parameter perturbation method are larger than those yielded by the probabilistic
approach. The results also shows that the proposed method has a good robustness with respect to
uncertainty.
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